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Kinetic theory of fluidized binary granular mixtures
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Balance laws and constitutive relations for a binary granular mixture with unequal granular temperature are
derived. The complete pair distribution function for two colliding spheres was assumed to be the product of
Maxwellian velocity distributions for each phase. The constitutive relations together with the transport equa-
tions form a model for a binary granular mixture with unequal granular temperature. An analytical expression
for viscosity of each phase shows the effect of different masses and granular temperatures of particles.
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I. INTRODUCTION

Dispersed particle flows in the form of solid suspensio
are common features in many industrial processes. Two
proaches are currently used to model the behavior of
dispersed phase: a ‘‘trajectory’’~Lagrangian! approach where
individual particles are tracked through a random flow fie
by solving their equation of motion; and a ‘‘two-fluid’’ mode
approach~Eulerian! in which the carrier and the disperse
phase are described by a set of continuum equations re
senting conservation of mass, momentum, and energy o
ther phase within a fixed element volume. It is well know
that the semi-empirical approaches widely used to de
two-fluid equations do not provide models that are free
empirical parameters, such as viscosity.

The first attempt to derive the system of continuum eq
tions for the dispersed phase from the analysis of micros
motion and interaction of particles was based on the kin
theory of particle collisions borrowed from the kinetic theo
of dense gases~see, for example, Refs.@1–4#!. The main
difference between the granular particles and a molecular
is that energy is lost in collisions between grains. The mot
of a fluidized particle is composed of a mean component
a fluctuating component. Savageet al. @1# used the term of
granular temperature to quantify the random motion of p
ticles about the mean velocity. The granular temperatur
defined as the average of the sum of the squares of the
fluctuating velocity components. The equations of motions
well as the collision integrals involved in the problem ha
been obtained for identical, smooth, nearly elastic sphe
and for plane flows of identical, rough, and inelastic dis
@2,3#. Such a closed system of continuum equations is u
to model the gas-particulate turbulent flow in numerous
gineering and industrial applications~see, for example, Refs
@5–7#!, and clearly leads to qualitatively correct predictio
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of some of the basic trends. For example, the numerical
sults show the phenomenon of the formation of a dense la
of particle phase at the wall, while the gas-solid mixture
the bulk of two phase flow remains dilute in the circulatin
fluidized beds of monodispersed particles. A real parti
system, however, consists of particles of various sizes
densities. These particles may segregate by size and de
Jenkins and Mancini@8# proposed a model for the binar
mixture of particles. They assumed that the two species
particles in the mixture have an average granular temp
ture. Shen@9# adopted the simplest averaging and predic
the shear and normal stresses in the simple shear of sph
with different diameters. Farrellet al. @10# speculated that
the assumption of equal granular temperature may not
true. Experimental data by Yang and Arastoopour@11# in a
riser with dilute gas-solid flow shows that particles of diffe
ent diameters possessed unequal turbulent energy. Ex
ments with a binary mixture consisting of 170 microme
steel particles and 450 micrometer glass beads were don
Gidaspowet al. @12# in a liquid-solid fluidized bed. Figure 1
shows the experimental apparatus. Ag-ray densitometer and
a calibrated conductivity meter were used to measure c
centrations of steel and glass particles. The velocity distri
tions of steel and glass particles were measured by a C
camera. Using the PIV technique fully described by G
daspowet al. for gas-solid flow in a riser@13# and for liquid-
solid fluidization @14#. Figure 2 shows typical vertical an
lateral velocity distributions of steel particles in the bina
mixture. Figure 3 shows the granular temperatures of s
and glass in the mixture and those for steel and glass al
The experimental data clearly show that the equipartition
kinetic energy does not hold. The granular temperatures
the steel particles and the glass beads in the mixture are
equal. The granular temperature of steel particles in the m
ture is larger than that of steel particles alone. The gran
temperature of the glass particles in the mixture is o
slightly less than that of the glass beads alone. Hence a s
rate balance of granular temperature is needed.
©2001 The American Physical Society01-1
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II. BINARY COLLISIONS IN DILUTE FLOW

We treat particles of two different species, norma
called phasesA and B. The particles of each species a
assumed to be smooth, inelastic, homogenous, sph
Those ofA have a diameterda , number densityna , and
massma , those ofB have diameterdb , number densitynb ,
and massmb .

We assume that each species in the binary mixture h
different granular temperature. The collisional fluxes a
sources of momentum and energy involve the pair distri
tion functions for colliding pairs of particles. We suppo
that these distribution functions can be expressed as

FIG. 1. Two-dimensional liquid-solid fluidized bed with instru
ments for particle velocity and concentration measurements.
i-
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product of the single particle velocity distribution functio
for each species. Rather than determining the single par
velocity distribution as approximate solutions to the kine
equations governing their evolution, we simply suppose t
they are Maxwellian. Savageet al. @1# and Lunet al. @3# do
essentially the same in deriving their constitutive relatio
for identical, smooth, nearly elastic, spheres.

Consider a collision between particle number 1 of spec
i and particle number 2 of speciesk, wherei andk may be
eitherA or B. Let c1 andc18 be the velocity of particle numbe
1 immediately before and after a collision, respectively. L
c2 andc28 be defined in the same way for particle number
The number of binary collisions between particles 1 and 2
given by

FIG. 3. Test of equipartition of oscillating kinetic energy~glass
particle mass51.1931027 kg; steel particle mass52.031028 kg!.
Nik5E E E f ik
~2!~r1i ,c1i ;r2k ,c2k!•~c21,ik•k!dik

2 dk dc1i dc2k , ~1!
at

of

of
cle

is-
n:
FIG. 2. Typical velocity distribution of a steel particle in a b
nary mixture ~liquid velocity52.47 cm/s; measured positionH
56.7 cm!.
where the distribution is defined such th
f ik

(2)dc1i dr1 dc2k dr2k is the probability for finding a pair of
particles 1 and 2 in the volumedr1i dr2k with velocitiesc1i

and c2k , k is the unit vector directed from the center
particle 2 to the center of particle 1 at collision,dik is the
mean particle diameter of particle 1 and 2,c21 is the relative
velocity particle 1 and particle 2. With the assumption
chaos, the pair distribution is related to the single parti
velocity distribution functions as

f ik
~2!~r1i ,c1i ;r2k ,c2k!5 f i~r ,c1i ! f k~r ,c2k!. ~2!

We must specify the form of the single particle velocity d
tribution. Here we simply suppose that they are Maxwellia
1-2
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f 1~c,r ,t !5ni S mi

2pu i
D 3/2

expF2
mi

2u i
~ci2ui !

2G , ~3!

whereui andu i are the mean velocity and the granular te
perature for speciesi:

u i5mi^Ci
2&/3, ~4!

whereCi is the fluctuating velocity for spheresi relative to
the hydrodynamic velocity. In contrast with the one therm
temperature for gases@15,16# and one granular temperatu
for binary granular mixture@8#, we assumed that each sp
cies has a different granular temperature. With this in mi
the number of binary collisions can then be written as

Nik5
pdik

2 nink

~2p!3 S mimk

u iuk
D 3/2E E E c21,ik

3expF2
mi

2u i
c1i

2 2
mk

2uk
c2k

2 Gdc1i dc2k . ~5!

Transforming to the relative velocityc21,ik and to the mass
center velocityG, using the collisional relations in a simila
manner as done by Chapman and Cowling@15#, and expand-
ing it in a Taylor series, the integral can be written as

Nik52dik
2 ninkS mimk

u iuk
D 3/2E E E exp@2AG22Dc21,ik

2 #

3~122BGc21,ik1¯ !G2 dG c21,ik
2 dc21,ik , ~6!

where the coefficientsA, B, andD are

A5
miuk1mku i

2u iuk
, B5

mimk~u i2uk!

2mou iuk
,

D5
mimk~miu i1mkuk!

2mo
2u iuk

, ~7!

wheremo is the sum ofma andmb . Carrying out the inte-
gration by parts, the result is

Nik5
Ap

4
dik

2 ninkS mimk

u iuk
D 3/2 1

A3/2D2

3S 123
B

AAD
16

B2

AD
210

B3

~AD!3/21¯ D . ~8!

If u i5uk and B50, the expression~8! reduces to the one
used for gases@15# and for particulates@4,8# with the as-
sumption of equal granular temperature of binary mixtu
Figure 4 shows the collisional numbers of binary granu
mixture as a function of granular temperatureuk for param-
eters close to the experiment. The collisional numbers
crease with increasing granular temperature of speciesk. In
the figure, the curve for the collisional number of equ
granular temperature,u i5uk , is presented for comparison.
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III. THE CONSERVATION EQUATIONS

The binary mixture will be described by a Boltzman
equation for each component with the influence of exter
forcesF @4,15#:

]

]t
f i~ci ,r ,t !1ci•

]

]r
f i~ci ,r ,t !1Fi•

]

]ci
f i~ci ,r ,t !

5J~ f i , f i !1J~ f i , f j !. ~9!

The termsJ( f i , f i) andJ( f i , f j ) represent the change in th
distribution function due to the collisions between partic
of speciesi - i and i - j , respectively.

Given a typical propertyc i5c i(c) of particle i, its mean
^c i& is defined by

^c i&5
1

ni
E c i~c! f i~c!dc,

where the dependence of the mean uponr and t is to be
understood. By multiplying the Boltzmann equation by
quantityc i and integrating overci , a transport equation fo
the quantityc i can be found:

]ni^c i&
]t

1“•S ni^cic i&1(
k

Pc,ikD
5ni K Fi•

]

]ci
c i L 1(

k
Nc,ik . ~10!

When we focus attention on a control volume fixed
spaces, the last two terms on the left-hand side give the
erage rate of change ofnic i due to net influx to the elemen
of particles bearingc i and due to collisional flux with par-
ticles of speciesk. The two terms on the right-hand sid
provide the explicit change ofci due to an external force an

FIG. 4. Computed collisional numbers of a binary granu
mixture.
1-3
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the average rate of change ofnic i due to collisional source
with particles of speciesk. The collisional flux and source
are, respectively,

Pc,ik52
dik

3

2 E
k•c12.0

~c1i8 2c1i !~k•c12,ik!

3k f ik
~2!S r2

1

2
dikk,c1i ;r1

1

2
dikk,c2kDdk dc1i dc2k ,

~11!

Nc,ik5
dik

2

2 E
k•c12.0

~c1i8 1c2k8 2c1i2c2k!~k•c12,ik!

3k f ik
~2!~r2dikk,c1i ;r ,c2k!dk dc1i dc2k . ~12!

The balance laws for the mixture are obtained by ass
ing the corresponding balance laws for the singles spec
Whenc i5mi , the mass balance for speciesi results in

]

]t
~nimi !1“•~nimiui !50. ~13!

If c i5mici in Eq. ~10!, the balance of linear momentum fo
speciesi is obtained:

]

]t
~« ir iui !1“•~« ir iuiui !52“•~Pk,i1Pc,i !1« ir iFi

1Nc~mici !. ~14!

Here Pk and Pc are the pressure tensor of the transport a
collisional contributions. Letc i5mici

2/2, with some familiar
manipulations and the use of^miCi

2&53u i , the balance of
fluctuation energy for speciesi is as follows:

3

2 F ]

]t
~niu i !1“•~niuiu i !G5~Pk,i1Pc,i !:“ui2“~qk,i1qc,i !

1« ir i^FiCi&1NciS 1

2
miCi

2D .

~15!

IV. CONSTITUTIVE RELATIONS

In order to calculate the collisional terms appearing in
balance laws, definite forms of the pair distributions at co
tact are needed. If it is assumed that collisions between
particles are only slightly influenced by the presence of ot
particles, the pair distribution functions can be expresse
terms of the product of two single particle velocity distrib
tion functions@4,8,15#:

f ik
~2!S r 2

1

2
dp,ikk,c1,i ;r 1

1

2
dp,ikk,c2,kD

5gik f i S r 2
1

2
dp,ikk,c1i D f kS r 1

1

2
dp,ikk,c2kD .
06130
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The factorgik is the equilibrium radial distribution function
of two spheres, one of speciesi and the other of speciesk, at
contact. The expression for the radial distribution at cont
for mixtures of hard spheres that is in best agreement w
numerical simulations is that of Mansooriet al. @17#. For
binary mixture it can be written as

gik5
1

12n
1

3didk

di1dk

j

~12n!2 12 S didk

di1dk
D 2 j2

~12n!3 ,

~16!

wherej54p(nidi
21nkdk

2)/3 andn is the total volume frac-
tion. Expanding the distribution function in Taylor series,
gives

f ik
~2!S r 2

1

2
dp,ikk,c1,i ;r 1

1

2
dp,ikk,c2,kD

5gikF f i~r ,c1i ! f k~r ,c2k!

1
1

2
dp,ikk f i~r ,c1i ! f k~r ,c2k!“ ln

f k~r ,c2k!

f i~r ,c1i !
G . ~17!

For a Maxwellian distribution the kinetic part of the stre
tensor for speciesi was defined as

Pk,i
~o!5nimi^Ci

~o!Ci
~o!&5E nimiCiCi f i

~o!dci . ~18!

Carrying out the integration, the first approximations for t
stress tensor gives the equation of state, that is,

Pk,i
~o!5Pi I5~niu i !I , ~19!

where I is a unit tensor. From the transport equation f
kinetic energy, the first approximation to the heat flux f
speciesi is given by

qk,i
~o!5E 1

2
nimiCi

2Ci f i
~o!dci . ~20!

But note that̂ Ci
k&50 for every odd integerk. Thus the first

approximation to the heat flux gives

qk,i
~o!50. ~21!

Substitution of Eq.~17! into Eq. ~11! gives an expression
for the collisional stress tensor shown below:

Pci5(
k

~Pc,ik
1 1Pc,ik

2 !

5(
k F2

1

2
dikgikE E E

c12•k.0

~c1i8 2c1i !

3 f i f kk~c12,ik•k!dk dc1i dc2k
1-4
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2
1

4
gikdik

2 E E E
c12•k.0

~c1i8 2c1i !

3 f i f kk“ ln
f k

f i
k~c12,ik•k!dkdc1idc2kG . ~22!

The collisional dynamics showed that

c1i8 2c1i52
mk

mo
~11e!~k•c12,ik!k. ~23!

Letting c1i5miC1i and using some integration identitie
given by Chapman and Cowling@15#, the first term in Eq.
~22! becomes

Pc,ik
1 5

p

9
~11eik!dik

3 gik

mimk

mo
E E c21,ik

2 f i f kdc1idc2kI ,

~24!

whereeik is the restitution coefficient between speciesi and
k, f i and f k are the velocity distribution of speciesi and k
which are assumed to be Maxwellian. Evaluating this in
gral using the same method as for the number of collisio
the result becomes

Pc,ik
1 5

p

48
~11eik!dik

3 gikS mimk

u iuk
D 3/2 niminkmk

moA3/2D5/2

3S 123
B

AAD
16

B2

AD
210

B3

~AD!3/21¯ D I .

~25!

If u i5uk , this expression reduces to the one found by J
kins and Mancini@8#. The total pressure in phasei is given
by

Pi5niu i1(
k

Pc,ik
1 ~26!

and the mixture pressure is of course given by

P5(
i

niu i1(
i

(
k

Pc,ik
1 . ~27!

The second term in Eq.~22!, Pc,ik
2 , is integrated overk by

using the second integration identity provided by Chapm
and Cowling@15#. This gives

Pc,ik
2 52Pc,ik

1 dik

3 S 2mimk~u i1uk!
2

pu iuk~miu i1mkuk!
D 1/2

3S 6

5
“

sui1“•ui I D , ~28!

where¹s means the rate of shear tensor.
The momentum source contribution in Eq.~14! can be

written
06130
-
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Nik~mic1i !5f ik
1 1f ik

2 , ~29!

where

f ik
1 52

mimk

mo
dik

2 ~11eik!E
k•c12.0

~k•c12,ik!2

3k f i f k dk dc1i dc2k , ~30a!

f ik
2 52

mimk

mo

dik
3

2
~11eik!E

k•c12.0
~k•c12,ik!2

3k f i f kk“ ln
f k

f i
dk dc1idc2k . ~30b!

Following directly the same procedure as used by Chapm
and Cowling@15#, the final results are

f ik
1 5Pc,ik

1 3

dik
S 2mimk~miu i1mkuk!

pmo
2u iuk

D 1/2

~uk2ui !,

~31a!

f ik
2 5Pc,ik

1 H“ ln
ni

nk
13“ S ln uk

ln u i
D

1
u iuk

~miuk1mkuk!
S mi“ ln u i

u i
2

mk“ ln uk

uk
D

1
5

3

u iuk

~miu i1mkuk!
S mk“ ln u i

u i
2

mi“ ln uk

uk
D J .

~31b!

The energy dissipation in Eq.~15! is given by

NciS 1

2
miCi

2D5(
k

Nc,ikS 1

2
mic1i

2 D5(
k

~g i
11g i

2!,

~32!

where

g i
15

dik
2

4

mimk

mo
~eik

2 21!E
k•c12.0

~k•c12,ik!3f i f k dk dc1i dc2k ,

~33a!

g i
25

dik
2

8

mimk

mo
~eik

2 21!E
k•c12.0

~k•c12,ik!3

3k f i f k“ ln
f k

f i
dk dc1i dc2k . ~33b!

These integrals can be evaluated using the integral theor
and the same technique as used by Gidaspow@4#:

g i
15

Ap

16
dik

2 ~12eik
2 !gik

mimk

mo
S mimk

u iuk
D 3/2 nink

A3/2D3

3S 12
3B

AAD
1

6B2

AD
2

10B3

~AD!3/21¯ D , ~34a!
1-5
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g i
252

4

p
~12eik!Pc,ik

1 mo~u i1uk!

~miu i1mkuk!
“•ui . ~34b!

The collisional heat flux for speciesi in Eq. ~15! is given
by

qc,ik52(
k

~qc,ik
1 1qc,ik

2 !, ~35!

where

qc,ik
1 5

dik
3

2 E
c12•k.0

k~c12,ik•k! f i f k~c1i8 2c1i !dk dc1i dc2k ,

~36a!

qc,ik
2 52

1

4
dik

4 E
c12•k.0

k~c12,ik•k! f i f k~c1i2c1i !

3~k•c1i !dk dc1i dc2k . ~36b!

Following the same procedure as used for calculating
energy dissipation@4,15#, the finial results are

qc,ik
1 52

9

5
Pc,ik

1 ~11eik!
mk

mo
~uk2ui !, ~37a!

qc,ik
2 52Pc,ik

1 dik~11eik!H S mku iuk

2pmi~miu i1mkuk!
D 1/2

3F“ ln
ni

nk
13“S ln uk

ln u i
D G

13S u iuk

2pmimk~miu i1mkuk!
D 1/2S mku iuk

miuk1mku i
D

FIG. 5. Computed collisional stress component as a function
granular temperature.
06130
e

mi“ ln u i

u i
2

mk“ ln uk

uk
D1

5

A2p
S mku iuk

mi~miu i1mkuk!
D 3/2

3S mk“ ln u i

u i
2

mi“ ln uk

uk
D . ~37b!

Again the above expressions~25!, ~28!, ~31!, ~34!, and
~37! reduce to similar expressions as found by Jenkins
Mancini @8# for u i5uk . Figures 5 and 6 show the collisiona
stress component and the energy dissipation componen
the binary granular mixture as a function of the granu
temperature. The granular temperatures of speciesi is ob-
tained from Eq.~15!. It can be seen that both the collision
stress component and the energy dissipation componen

f

FIG. 6. Profiles of the energy dissipation component of a bin
granular mixture.

FIG. 7. Profiles of the computed collisional stress componen
a function of mass ratio.
1-6
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increased with increasing the granular temperature of spe
k. In these figures, the curves of the collisional stress co
ponent and the energy dissipation component for eq
granular temperature,u i5uk , are also given.

Figure 7 shows the collisional stress component as a fu
tion of particle mass ratios. Foru i,uk , the collisional stress
component first decreases with the ratio of masses, then
creases with the ratio of masses. However, whenu i.uk , the
collisional stress component increases, reaches a maxim
then decreases with increasing the ratio of particle mass.
the u i5uk , the collisional stress component is independ
of the ratio of masses. Figure 8 shows the energy dissipa
component as a function of the ratio of particle masses. It
be seen that foruk50.4 the energy dissipation compone
first decreases with the ratio of masses, reaches a minim
then increases with increasing ratio of particle masses. As
granular temperatureuk increases, the energy dissipatio
component decreases with the ratio of particle masses.

The theory given above can also be used to predict
transport properties of particulate phases such as viscos
conductivities, and diffusivities. From Eq.~28!, it gives us
the following viscosity coefficient:

mc,ik5
2pdi

4nink~11eik!gik

15 S mimku iuk~u i1uk!
2

2p~miu i1mkuk!
3 D 1/2

3S mo
2u iuk

~miu i1mkuk!~miuk1mku i !
D 3/2

3S 123
B

AAD
16

B2

AD
210

B3

~AD!3/21¯ D . ~38!

In the viscosity expression~38! the masses have a form sim
lar to that in the standard expression for the binary diffus

FIG. 8. Profiles of the energy dissipation component as a fu
tion of mass ratio.
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coefficient of gases. They are of the form 1/mi11/mj . Simi-
larly the granular temperatures have the form of addit
resistances, such as 1/u i11/u j . The viscosity of phasei in
the N phases is as follows:

mc,i5 (
k51

N

mc,ik . ~39!

The mixture viscosity is the sum of the phase viscosities

c-
FIG. 9. Variation of computed particulate viscosity with gran

lar temperature.

FIG. 10. Computed particulate viscosity as a function of m
ratio.
1-7
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mc5(
i 51

N

(
k51

N

mc,ik . ~40!

For the Maxwellian distribution assumed here the kine
viscosity is zero. This restricts the application to dense m
ture, such as the experimental mixture of glass beads
steel particles described here.

Figure 9 shows the particulate viscosity of speciesi as a
function of the granular temperature. The particulate visco
ties decrease with increasing granular temperature of spe
k. The value of the particulate viscosity drops rapidly in t
range of small values of granular temperature of speciek,
then, gradually goes down with increasing granular tempe
ture. In the figure, the computed results of the particul
viscosity for the condition of equal granular temperature,u i
5uk , is also given. Figure 10 shows the particulate viscos
of speciesi as a function of the ratio of particle masses.
can be seen that whenuk50.4 the particulate viscosity com
ponent increases with the ratio of particle masses, reach
maximum, then decreases with increasing ratio of part
masses. However, as the granular temperature of speck
, J
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increases, the particulate viscosity of speciesi decreases with
increasing the ratio of particle masses.

V. CONCLUSION

Granular temperature of particles of different masses
diameters suspended in the fluids are known to differ
many orders of magnitude due to the dissipation of th
kinetic energy. To describe such motion balances of m
momentum, and the fluctuating kinetic energy~granular tem-
perature! have been derived for each particle phase. The
sipation of energy is due to effective restitution coefficien
A new analytical expression for the viscosity of each parti
phase and for the mixture allows a quick calculation of v
cosities from measurements of granular temperatures of
ticles of several sizes and density, as previously reported
particles of a uniform size and density.
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